
20 The Delphi Magazine Issue 42

Implementing
Active Server Pages
by Eyal Hirsch

Writing internet applications
using Delphi is a snap ever

since Delphi 3 was released.
Thanks to the new technologies
presented in Delphi 3 we can
develop ISAPI, NSAPI, CGI and
WinCgi applications with greater
ease than ever before. We can also
deploy ActiveX forms and use
DCOM, Midas and CORBA in order
to distribute code and objects over
the net. However, one technology
with no apparent support in Delphi
is Microsoft’s Active Server Pages
(ASP).

As we’ll see in this article,
though, you can easily harvest the
power of ASP in your Delphi apps.

ASP In General
Active Server Pages enable us to
use objects installed on the web
server machine, from within the
client’s browser. They also enable
us to call methods and manipulate
properties defined by these
objects. Basically, we use special
tags in the HTML file, so that when
the web server program (be it the
Personal Web Server, PWS, or the
Internet Information Server, IIS)
parses the HTML file and encoun-
ters these tags our object will be
instantiated. Inside our object, we
have the opportunity to retrieve
data from the client’s browser and
send data back to the browser,
thanks to a set of predefined inter-
faces supplied to us by the web
server. Using Delphi’s built-in sup-
port for Automation objects and
ActiveX libraries, we can now build
ASP objects with all the ease and
flexibility that Delphi can offer.

Note that since the ActiveX
library, which will host our
objects, will be implemented as a
DLL, the web server and the DLL
will share the same processing
space. Thus, the DLL will be avail-
able when objects within it are
called repeatedly from within an

ASP file. This is a great advantage
over CGI applications, where the
server has to load the CGI program
each time it is called. In ASP appli-
cations the DLL is only loaded
once. So ASP has a speed advan-
tage over CGI, but this also means
that debugging the DLL means
restarting the web server, as for
ISAPI and NSAPI but not for CGI.

Preliminary Actions
Before we can start to use ASP we
have to take some preliminary
actions. First, we must install a web
server on our machine. We can
install the PWS on a Win95/98
system or use IIS4 on Windows NT.
You can download both the serv-
ers from Microsoft’s web page. In
this article I’ll concentrate on PWS
for Win95/98, as there are no signif-
icant differences between that and
IIS. What I describe here should
also work on IIS.

The next step is to define a vir-
tual directory for the ASP files (I’ll
place the ASP and HTML files in the
same directory). Start PWS and
click the Advanced icon. In the
Advanced form, click the Add button,
this in turn will open a form where

you specify the location of your
virtual directory, its alias name
and the rights given for this alias.
I’ve created a directory named ASP
under C:\InetPub\Scripts and
named the alias ASP. Also check all
the checkboxes in the Access
panel. See Figure 1 for a snapshot
of this screen. After clicking OK,
you should be able to see the /ASP
alias in the Virtual Directories
treeview. All the ASP and HTML
files should go underneath this
directory.

In order to be sure everything is
defined as it should be, place an
empty HTML file named
default.html in this directory and
click the Start button in PWS’s
main page. Run Internet Explorer
and in the Address combobox type
http://127.0.0.1/asp. This should
display the default empty HTML
file.

When using ASP, you must spec-
ify your computer name: either the
name of your computer on the net
(eg http://MyComputer/asp) or a
fully qualified URL such as
http://www.mycompany.com/asp.
The 127.0.0.1 address is a default
address pointing back to your
computer: throughout this article
and also in my HTML files I’ll use
this address. As far as I’m aware,
Delphi 4 currently has no support
for debugging ASP files, so there
are no other actions to take
in order to enable debugging, as

➤ Figure 1

February 1999 The Delphi Magazine 21

opposed to ISAPI/NSAPI and CGI
applications. Once PWS runs an
ASP file and our object is created,
you won’t be able to recompile the
DLL again. The reason for that is
that PWS loads this DLL into
memory and unless you can
unload it, you won’t be able to
recompile. You can unload the DLL
by running the PWS program with
the /stop switch from Window’s
Run command option. Strangely
enough, pressing the Stopbutton in
PWS won’t unload the DLL, so you
must stop it manually or reboot the
machine (keep up the good work
Microsoft!).

Getting Started With ASP
Let’s open Delphi and start writing
ASP objects. Close any open pro-
jects, choose the File | New menu
item, go to the ActiveX page and
double click the ActiveX library
icon. Save the project anywhere
you want with the name Delphi.
Now click Project | Import type
library and choose Microsoft
Active Server Pages (Version 2.0)
and click OK. Add the
ASPTypeLibrary_TLB.pas file cre-
ated for you (the default is in the
Delphi4/Imports directory) into
the project. This file contains all
the ASP-related objects declared

by Microsoft,
which enable us to
respond to user
activities. Choose
File | New again
and double click
the Automation
object in the
ActiveX page,
naming the class
SimpleObject.
Delphi will open the type library
editor form, where you can see
your project name as the root of
the TypeLib and the ISimpleObject
interface followed by the
SimpleObject co-class. Add two
WideString properties to the
ISimpleObject interface and name
them FirstName and LastName (both
are read and write properties).
Next add the methods WriteData,
OnStartPage and OnEndPage. Finally,
add a constant parameter named
unk of type IUnknown to the
OnStartPage method.

Your type library should now
look like Figure 2.

When PWS encounters a refer-
ence to an automation object in the
ASP file (we’ll see how to do this
shortly) it creates the object and

calls our OnStartPage function,
passing it an interface reference of
type IUknown, which we’ll cast into
an IScriptingContext interface
(declared in the ASPType-
Library_TLB file) and save it in a pri-
vate field in the automation object,
named fScript. This field will
enable us to interact with the
browser later on in the WriteData
method. The last thing to do is to
override the Initialize method of
the TAutoObject class, so we can
initialize some of our fields. In
addition, for this specific object,
we’ll create a custom form, which
you can use for any desired task
you can think of. I didn’t use it
in this example; however, one

➤ Listing 1

➤ Figure 2

unit SimpleObject;
interface
uses
ComObj, ActiveX, delphi_TLB, ASPTypeLibrary_TLB,
uServerForm;

type
TSimpleObject = class(TAutoObject, ISimpleObject)
private
fScript : IScriptingContext;
fFirstName, fLastName : WideString;

protected
function Get_LastName: WideString; safecall;
function Get_FirstName: WideString; safecall;
procedure OnEndPage; safecall;
procedure OnStartPage(const unk: IUnknown); safecall;
procedure Set_LastName(const Value: WideString);
safecall;

procedure Set_FirstName(const Value: WideString);
safecall;

procedure WriteData; safecall;
public
procedure Initialize; override;

end;
implementation
uses ComServ;
function TSimpleObject.Get_LastName: WideString;
begin
Result := fLastName;

end;
function TSimpleObject.Get_FirstName: WideString;
begin
Result := fFirstName;

end;
procedure TSimpleObject.OnEndPage;
begin
fScript := nil; // Release IScriptingContext interface

end;
procedure TSimpleObject.OnStartPage(const unk: IUnknown);
begin

// Save the IScriptingContext interface
fScript := unk as IScriptingContext;

end;
procedure TSimpleObject.Set_LastName(
const Value: WideString);

begin
fLastName := Value;

end;
procedure TSimpleObject.Set_FirstName(
const Value: WideString);

begin
fFirstName := Value;

end;
procedure TSimpleObject.WriteData;
begin
// Write response page to client's browser.
fScript.Response.Write('<TABLE>');
fScript.Response.Write('<TR><TD>First name : </TD>');
fScript.Response.Write('<TD>'+fFirstName+'</TD></TR>');
fScript.Response.Write('<TR><TD>Last name : </TD>');
fScript.Response.Write('<TD>'+fLastName+'</TD></TR>');
fScript.Response.Write('</TABLE>');

end;
procedure TSimpleObject.Initialize;
begin
inherited Initialize; // Initialize the object's state
fFirstName := '';
fLastName := '';
// Create the server form.
if not Assigned(frmAspServer) then begin
frmAspServer := TfrmAspServer.Create (nil);
frmAspServer.Show;

end;
end;
initialization
TAutoObjectFactory.Create(ComServer, TSimpleObject,
Class_SimpleObject, ciMultiInstance, tmApartment);

end.

22 The Delphi Magazine Issue 42

implementation I can think of is to
add the names of the users to a
string grid control. The complete
source is shown in Listing 1.

Three important methods to
notice in Listing 1 are OnStartPage,
OnEndPage and WriteData. Inside
OnStartPagewe save the IScripting
Context interface we’ve received
from PWS into the private field
named fScript. In the OnEndPage
method we release this interface,
by assigning it a nil value (it’s
important to remember to always
clean up after yourself!).

The WriteData method uses the
fScript field to write data back into
the client’s browser. We use the
Response property of the
IScriptingContext interface, which
is of type IResponse, along with the
Write method of this interface, to
write the first and last name of
the user back into the client’s
browser.

We’re now only a few mouse
clicks away from completing the
Delphi code. All that is left now is to
click the Run | Register ActiveX
Server menu item, which will com-
pile the project into a DLL, and
register our type library and auto-
mation object with the Windows
registry.

Creating SimpleObject
HTML And ASP Files
Next we’ll create the HTML file
where the user can supply his or
her data. This is a simple HTML file
with some text and two edit boxes
for the users to supply their first
and last name (see Listing 2).

The most important line in the
SimpleObject.HTML file is this:

<form Action="http://127.0.0.1/
asp/SimpleObject.asp"
METHOD="post">

We encapsulate all of our HTML
controls inside this form tag. The
form’s method is POST and its
Action field dictates what page
should be processed next, in this
case the SimpleObject.ASP file,
which is placed in our virtual direc-
tory, ASP. When the user clicks the
Submit button the ASP file will be
processed by the web server,
which will eventually cause our
ASP object to be instantiated.

Let’s create our first ASP file
now. This is a simple text file,
which you can create with any text
editor (such as NotePad) or with a
tool such as Microsoft’s FrontPage.
All you have to remember when
writing ASP files is that ASP calls

are enclosed by the <% characters;
otherwise they are merely HTML
files. This means that you can use
ASP calls and HTML tags
interchangeably.

First we have to create our Auto-
mation object from the ASP file. We
accomplish this by using the
Server object and calling its
CreateObject method, passing it
the object’s name, in this case
delphi.SimpleObject. Next, we
assign the data typed by the user
to the automation object’s proper-
ties, using the Request object,
which is of type IRequest. The
Request object has a property
named Form, which is like an array
property in Delphi. We use the Form
property, in order to retrieve the
data supplied by the user, in the
following manner:

objDelphi.FirstName =
Request.Form(“firstname”)

Now all that is left to do, is call our
object’s WriteData method and we
are done. You can see the ASP
code in Listing 3. The resulting
HTML is shown in Figure 3.

Databases And ASP
Being able to save user data or
supply the user with data from a
remote database is a major issue
when implementing internet appli-
cations. Since the article is about
ASP and we are using Delphi to
implement the ASP objects, why
not use Delphi’s capabilities in the
database area? Nothing prevents
us from adding a data module to
the type library, along with tables,
queries and other native database
components provided by Delphi.

The next ASP object we’ll build
will enable us to retrieve data from
the demo tables supplied with
Delphi. Run Delphi and re-open the
last project (delphi.dpr). Add a
new data module to the project,
add to it a TQuery component,
name it qryTable, set its DataBase
property to DBDEMOS and clear its
SQL property. Next, add another
Automation object to the project
and name it SQLObject.

Now we can start adding
methods and properties to this
object. First we create the

➤ Below: Listing 3➤ Above: Listing 2

<html>
<head>
<title>Using Simple Object</title>
</head>
<body>
<%
'Create the object named SimpleObject.
set objDelphi = Server.CreateObject("delphi.SimpleObject")
'Set the properties of that object.
objDelphi.FirstName = Request.Form("firstname")
objDelphi.LastName =Request.Form("lastname")
'Display the data supplied by the user.
objDelphi.WriteData

%>
</body>
</html>

<html>
<head>
<title>Simple Object page</title>
</head>
<body>
<form ACTION="http://127.0.0.1/asp/SimpleObject.asp" METHOD="post">
<p>Enter the following details</p>
<table border="0" width="381">
<tr>
<td width="91">First name :</td>
<td width="201"><input TYPE="text" SIZE="20" NAME="firstname"> </td>

</tr>
<tr>
<td width="91">Last name :</td>
<td width="201"><input TYPE="text" SIZE="20" NAME="lastname"> </td>
<td width="77"><input TYPE="submit" VALUE="submit"> </td>

</tr>
</table>

</form>
</body>
</html>

24 The Delphi Magazine Issue 42

methods OnStartPage and
OnEndPage, just as we’ve done with
the last object (simply copy it from
the previous object).The imple-
mentation of these methods is
exactly the same as in the
SimpleObject, so I won’t delve into
explaining these methods again.
Add an SQL property of type
WideString and an integer property
named UseProducer. Both proper-
ties are read and write properties.
Finally add the ExecuteSql method.
Your type library should look like
Figure 4 by now.

Take a look at Listing 4 which
shows the relevant code for the
SqlObject. Notice that most of the
code is quite straightforward and
repeats itself. The OnStartPage and
OnEndPage methods are the same as
in the SimpleObject object and the
Initialize procedure is almost

identical. Note that I have also
declared two additional private
fields in order to save the SQL sen-
tence that the user specified and
whether he or she wants to use the
TDataSetTableProducer component.

As you have probably noticed,
our goal in ASP is to retrieve user
input from within his or her
browser and act upon it. We manip-
ulate the user’s input and then
write some HTML text back to the
client’s browser. It is up to us to
decide how this
HTML text will be
produced. We can
build this HTML
text manually, as
we will do when the
UseProducer check-
box is unchecked,
or we can do it with
components. When
the user checks the

UseProducer checkbox, we’ll use
the TDataSetTableProducer compo-
nent provided by Delphi to pro-
duce the HTML output.

The action takes place in the
ExecuteSql method of the
SQLObject class. In this method, we
add the value of the private field
named fSQL into the SQL property
of the TQuery component. The fSQL
property is set in the Set_SQL
method and holds the SQL sen-
tence specified by the user in the
browser. Next we open the query.
Using the IScriptingContext inter-
face given to us in the OnStartPage
method, we write the record count
property of the query, courtesy of
the Write method of the Response
object. Next, we’ll report to the
user the state of the UseProducer
checkbox. As you can see, we can
actually check the value of a con-
trol placed in the HTML file from
within Delphi. The IScripting-
Context interface enables us to

➤ Listing 4

type
TSQLObj = class(TAutoObject, ISQLObj)
private
fScript : IScriptingContext;
fSql : WideString;
fUseProducer : Integer;
procedure BuildTableData;

protected
procedure ExecuteSql; safecall;
procedure OnStartPage(const unk: IUnknown); safecall;
procedure OnEndPage; safecall;
function Get_SQL: WideString; safecall;
procedure Set_SQL(const Value: WideString); safecall;
function Get_UseProducer: Integer; safecall;
procedure Set_UseProducer(Value: Integer); safecall;

public
procedure Initialize; override;

end;
procedure TSQLObj.BuildTableData;
var i : integer;
begin
// Build html response page to be sent to client's browser
with fScript.Response, dmBioLife.qryTable do
if (fUseProducer = 0) then begin
while not Eof do begin
// Iterate through the data set
// Write field's values to the browser
for i := 0 to Pred(dmBioLife.qryTable.FieldCount) do
Write(Format('%s, ',
[dmBioLife.qryTable.Fields[i].AsString]));

Next;
Write('
');

end;
end else
// Display the data using the page producer
write(dmBioLife.dsProducer.Content);

end;
procedure TSQLObj.ExecuteSql;
var sValue : string;
begin
try
// Add the client's sql sentence.
if (Length (fSql) > 0) then begin
dmBioLife.qryTable.Sql.Clear;
dmBioLife.qryTable.Sql.Add (fSql);

end;
dmBioLife.qryTable.Active := true;
with fScript.Response, dmBioLife.qryTable do begin
// Report back to user some custom data.
Write(Format(
'After opening query - Rec No. = %d
',
[dmBioLife.qryTable.RecordCount]));

sValue := UpperCase(
fScript.Request.Form.Item['cbDsProducer']);

if(sValue = '') then
sValue := 'OFF';

Write(Format('Checkbox value in html form = %s
',
[sValue]));

// Build html response page to send to browser
BuildTableData;

end;
finally
end;

end;

➤ Figure 4

➤ Figure 3

26 The Delphi Magazine Issue 42

have access to the Form object
through its Request object. The
Form object holds an arrayed prop-
erty named Item, which in turn
holds all the control’s values
placed on the HTML form. When
the user checks this checkbox, the

value of this item will be ON, as
specified in the SqlObject.HTML
file.

These two actions, reporting the
record count and the value of the
checkbox, are optional. I used
them when debugging the project
and decided to leave them in so
you can see how to use them.

All that is left to do now is to
send the query results back to the
browser, so the user can see them.
Printing the query result is done in
the BuildTableData method. First
we have to check the value of the
fUseProducer field, if its value is
other than zero then the user spec-
ified he or she wants to use the
TDataSetTableProducer compo-
nent. If the user didn’t want to use
the TDataSetTableProducer compo-
nent, we simply iterate through the
resulting data set and write each
record in a separate line using the
HTML tag
.

ASP And HTML For SqlObject
SqlObject.Asp is the ASP file for
the SqlObject. This file is very
simple: we create our object using
the Server’s method CreateObject
with the appropriate object name.
Then we set the object’s Sql and
UserProducer properties. Finally
we call the ExecuteSql method to
run the query.

The HTML file for this object
(SqlObject.HTML) is also simple,
containing a Submit button, a Reset
button, an editbox for the SQL text
and a checkbox control. The code
for the HTML file is in Listing 5 and
the ASP file is shown in Listing 6.
The resulting HTML file, which was
produced with the UseProducer
option on, is shown in Figure 5.

Summary
In this article we’ve seen how to
implement ASP objects using
Delphi. Note that I didn’t delve into
the ASP syntax: it is very simple
and you won’t have any trouble
learning it as it is very similar to
Delphi.

Acknowledgement
Additional information about ASP
can be found at www.15seconds.
com and www.activeserverpages.
com. Thanks to those who assisted
me getting started with ASP.

Eyal Hirsch works as a Delphi
developer in Israel. He can be
contacted via email as
eyalhir@netvision.net.il

<html>
<head>
<title>Sql Object page</title>
</head>
<body>
<form ACTION="http://127.0.0.1/asp/SqlObject.asp" METHOD="POST">
<table border="0" width="450">
<tr>
<td>SQL line</td>
<td><input TYPE="text" VALUE="select * from biolife" SIZE="20"
NAME="edtSql"> </td>

<td><input TYPE="checkbox" VALUE="on" NAME="cbDsProducer">
Use Dataset Producer </td>

</tr>
<tr>
<td></td>
<td><input TYPE="submit" VALUE="Submit" NAME="btnSubmitQuery">
<input TYPE="reset" VALUE="Reset" NAME="B2"> </td>

</tr>
</table>

</form>
</body>
</html>

<html>
<head>
<title>Using SQL Object</title>
</head>
<body>
<%
'Create the object named SQLObject
set objDelphiSql = Server.CreateObject("delphi.SQLObj")
'Set the SQL property to the value specified by the user
objDelphiSql.SQL = Request.Form("edtSql")
if Request.Form("cbDsProducer")="on" then
objDelphiSql.UseProducer = 1
else
objDelphiSql.UseProducer = 0
end if
'Run the query
objDelphiSql.ExecuteSql %>

</body>
</html>

➤ Figure 5

➤ Above: Listing 5 ➤ Below: Listing 6

	ASP In General
	Preliminary Actions
	Getting the TypeLib and the ISimpleObject
	Creating SimpleObject HTML And ASP Files
	Databases And ASP
	ASP And HTML For SqlObject
	Summary
	Acknowledgement

